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Abstract 

We consider Newton's method for the linear fractional combinatorial opti- 
mization. First we show a strongly polynomial bound on the number of itera- 
tions for the general case. Then we consider the transshipment problem when 
the maximum arc cost is being minimized. This problem can be reduced to 
the maximum mean-weight cut problem, which is a special case of the linear 
fractional combinatorial optimization. We prove that Newton's method runs 
in 0{m) iterations for the maximum mean-weight cut problem. One iteration 
is dominated by the maximum flow computation, so the overall running time 
is.Ö(m2n). The previous fastest algorithm is based on Meggido's parametric 
search method and runs in 0(nsm) time. 
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1    Introduction 

A linear fractional combinatorial optimization (LFCO) problem is defined as follows. A 

specification of a system X C {0,1}P and two vectors (aua2,.. -,a?), {h,b2,...,bp) G Rp 

are given. 

Maximize : —7-7 >      suDjeci to   \x\,x2,.. .,*p) e /i- 
6l*l + t>22;2 + 1" ^P 

* belongs to some specified class of systems. Vector (zi,22,.. .,sP) € #, represents some 

structure, a subset of some underlying set of p objects,   a and b{ are the cost and fte 

weight of object i. £f=I «i*. H=i ***» «"* (Al ^O/CELi W «" ^ cos<< «^ 
and mean-weight cost of the structure represented by (xux2,..., xp). In an LFCO problem 

we are asked to compute the maximum mean-weight cost of a structure in X. We also want 

to find a structure which has the maximum mean-weight cost. 

For example the maximum mean-weight spanning tree problem is an LFCO problem. 

In this problem the class of systems is the class of sets of all spanning trees in graphs: 

{{TI T - spanning tree in G} \ G - graph}. 

The description of graph G = (V,E) is the specification of XG C {0, l}m, the set of.(the 

characteristic vectors of) all spanning trees in G (m = \E\). The underlying set of objects 

for XG is the set of edges in G. Vector (xi, za, -.., as«) € XG represents spanning tree T in 

G such that edge i belongs to T iff x; = 1. Numbers ax, a2,..., a™ are the costs of edges and 

bub2,...,bm are the weights. The task is to find a spanning tree in G with the maximum 

mean-weight cost. 

We will use bold letters to denote vectors and corresponding italic letters to denote 

their coordinates, for example x = (xi, x2,..., xP). For two vectors a and x of equal length, 

ax denotes the scalar product of a and x, i.e., ax = 01*1 + a2x2 + ••••+ OpXp. With this 

notation an LFCO problem is to 

(pi) maximize     —,      subject to   x € X. 

We assume that bx > 0 for all x 6 X, and ax > 0 for some x € X. Problem (PI) can be 

equivalently formulated in the following way: 

(P2)    minimize  6,     subject to    (ax) - 6{hx) < 0, for all x € X. 

Let 6* denote the miTiiTT-mm we are looking for. Let 

h(6)   =   max{(ax) - S(bx)}. (1) 



Function. h(6) is convex, piecewise linear, decreasing, and S" is its only root. We assume 

that we can maximize any linear function over X, so for any 6 we can compute ,h(6) and 

x € X such that (a — 6b)x = h(S). Let A be an algorithm which does such computation 

and let T be its running time. Having such an algorithm enables us to compute 6' with 

Newton's method. We show that Newton's method finds 6" in 0(p4) iterations. This 

bound on the number of iterations is independent of the complexity of the class of systems 

which X belongs to, and independent of the complexity of computing h{6). One iteration 

is dominated by algorithm .4., so the overall time is 0(p4T). 

The other way of computing 6" is Megiddo's parametric search method [8]. This ap- 

proach gives an algorithm with running time O^T'q^T'logQ + Q)), where T' and T'q refer 

to the sequential running time and the parallel running time on Q processors of computing 

the sign of h{6) for a given 6. Thus an efficient algorithm for an LFCO problem can be 

obtained if an efficient parallel algorithm for the corresponding nonfractional problem is 

available. 

If costs and weights are integers from [—U, U], then using the straightforward binary 

search we can find in 0(log(pU)) iterations an interval I of length less than l/(pU)2 which 

contains 6". One iteration is dominated by computing the sign of h(S) for an appropriate 

6. An interval of length less than l/(pU)2 can contain at most one mean-weight cost. The 

overall time of this approach is 0(T'log(pU) + T). 

In the second part of the paper we consider the minimum maximum arc cost trans- 

shipment (MAC) problem, which is the transshipment problem when the maximum of the 

arc costs is being minimized. This problem can be reduced to the maximum mean-weight 

cut (MWC) problem, which is an LFCO problem. The underlying nonfractional problem 

is the standard maximum flow problem. This problem does not have an efficient parallel 

algorithm. Nevertheless, up to now, Megiddo's method gave the best known upper bound, 

namely Ö(mn3) [8], for the MWC and MAC problems. We show that Newton's method 

applied to the MWC problem runs in 0(m) iterations. One iteration is dominated by max- 

imum flow computation, so the overall running time is Ö(m2n). The same bound holds for 

the MAC problem. 

2    Newton's Method for Linear Fractional Combinatorial 
Optimization 

The following is Newton's method for computing the root 6* of h(S) (defined in (1)). 



Figure 1: Newton's method for solving h(6) = 0 

Let 8 < 8' be the current estimation to 8*. Initially 8 = 0. (Observe that our as- 

sumptions guarantee 8" > 0.) During one iteration we compute h{6) and x € X such that 

h{8) = (ax) - £(bx), i.e., we maximize linear function (a - £b)x over X. This is done by 

algorithm A. If h(6) = 0, then 8' = 8 and the algorithm terminates. Otherwise we compute 

the next estimation 8 +- ax/bx, the mean-weight cost of x, and go to the next iteration. 

The process is illustrated in Figure 1. 

Let Si be the value of 8 at the beginning of ith iteration, and X;, Hi, and Bi, be x, 

(a - 8ib)±, and bx from this iteration. 

Si   =   (a-^b)x,- = max{(a - $ib)x | x € X}, 

Bi bxj, 
ax£ 
bx,' 

and it can be easily derived that 
/?       £.-Hi 
Oi+l - Oi• - — (2) 



The following lemma indicates fast convergence of the above algorithm. 

Lemma 1 

^ + %^<1. (3) 

Proof. Vector xt- maximizes (a - 6,b)x, so 

(a - 6;b)xi   >    (a - £tb)x;+1. 

Therefore 

Hi   =   (a-fcb)x;   >   (a-5tb)xi+i 

=    (a - £+ib)xi+i + (6i+1 - £)bxi+1 

This implies Inequality (3).   ■ 

The above lemma gives immediately the following bound on the number of iterations. 

Theorem 1 If in an LFCO problem the coordinates of vectors a and b are integers from 

[—U,U], then Newton's method finds the optimum in 0(log{pU)) iterations. 

Proof. Inequality (3) implies 
Hj+iBj+i      1 , » 

StBi     ~ 4* K} 

For any i for which JB-» > 0, 

{pUf > HiBi > ±. (5) 

The second inequality holds because 

*'- b^x ~pU- 

Inequalities (4) and (5) imply the bound of 0(log(pU)) on the number of iteration.  ■ 

The special case with uniform weights, i.e., b = (1,1,..., 1), is of independent interest. 

The task here is to find the maximum, mean cost of a structure. Sequence (Bi), excluding the 

last iteration, is decreasing. This implies the following strongly polynomial bound, which 

was observed by Karzanov [11] and, in the context of the maximum mean cut problem, by 

McCormick and Ervolina [7]. 

Theorem 2 If the weights are uniform, then Newton's method runs in at mostp+1 iterations. 



Now we prove a strongly polynomial bound on the number of iterations for the general 

case, when both costs and weights can be arbitrary real numbers. The intuition behind 

the analysis is as follows. Lemma 1 suggests that there are some sequences related to the 

rate of convergence of the method, which tend to zero at least geometrically fast. The 

elements of these sequences are obtained from only 2p numbers, the costs ai,a2,.. .,Op, 

and the weights bi,b2 ■■■,bp, using only 0(p) additions/subtractions and at most one or 

two multiplications/divisions. We show that because of this limiting use of arithmetical 

operations, the lengths of such sequences cannot be too big. 

To expand this intuition a little bit, let us assume that Bi+i/Bi < 1 - a, for some 

positive constant a, that is sequence (Bi) tends to zero at least geometrically fast. Each 

element of sequence (Bi) is a sum of different elements from {61, b2,..., bp}. Let us further 

assume that h > b2 > ■■■ > bp > 0. Obviously 2?i < pb-y. Since (Bi) decreases at least 

geometrically, for some I = O(logp), Bi <b\. It means that 61 is not a term in Bi, nor is 

it in Bi, for any i > I. Bi < (p - l)b2, and the next O(logp) elements of (£,-) exclude b2, 

then fe3, and so on. Therefore the length of sequence (Bi) is O(plogp). 

There are two reasons why the general case is more complicated. First, we have to deal 

with positive and negative numbers. Even if both costs and weights are positive, negative 

numbers appear because subtractions are used in forming the elements of (Hi). Second, if 

(Bi) does not decrease fast enough, then we have to use sequence (.Hi), whose elements are 

not just subsums of some given set of numbers. The following lemma is our tool to deal 

with both positive and negative numbers. Here the coordinates of vector c are numbers 

which are used to form sums, and (y*c) is a sequence of such sums. 

Lemma 2 Let c € Rp and yk € {0,1}P\{0}, for k = 1,2,..., q, be such that 

|y*+ic| < pj|y*c|,   for* = l,2,...,g-l. (6) 

Then q < p. 

Proof. Assume that q > p. Let Y denote the matrix whose rows are vectors yi, y2, ..., 

yg. Since q > p, there is a nonzero vector 2 £ R9 such that zY = 0. Moreover, z can be 

chosen in such a way that all its coordinates are rational numbers with denominators and 

enumerators being the determinants of submatrices of Y. Let z = (21,22,..., zq) be such a 

vector. Thus, for t = 1,2,..., q, either z, = 0 or 

±-<\zi\<P*. (7) 



We have 

0 = zYc = zi(yic) + 22(y2<0 + • • • + zg{yqc). 

But this is not possible, because the nonzero terms on the right side cannot cancel. Since 

yq ^ 0, so for some 1 < i < q - 1, z; # 0, and z;y;c # 0. If 1 < i < j < q and z;y;c ^ 0, 

then (6) and (7) imply 

k;(y;c)| < *>2pN^|y,-c| = ^l*(y.-e)|. 

Lemma 3 There are at most 0(j?2logp) iterations k such that Bk+i < f-^fc- 

Proof. Consider the sequence of all iterations k such that Bk+i < \Bk. Take from this 

sequence every Zth iteration, where Z = |"6plogp|. Let they be iterations ti,t2,...,iq. For 

1 < * < ?- 1> 

Lemma 2 implies q <p, which implies 0(p2 logp) bound on the number of iterations k such 

that Bk+1 < \Bk.  ■ 

Lemma 4 There are at most 0(j>2logp) consecutive iterations k such that Bk+i > f-Bjfe- 

Proof. Consider a sequence of consecutive iterations i, i + 1, ..., j, such that for each 

t < Jb < j - 1: 

Bk+i > \BU. (8) 

This and Inequality (3) imply that for each i < k < j - 1: 

Ek+i < \Hk. 

Therefore 

6k+i - 6k+1 = §gi < |g = |(*fc+1 - «*)■ (9) 

Let Z = [3plogp| + 1. Consider the sequence of every Zth iteration out of iterations i, 

i + 1, • •., J- Let they be iterations *i,t2,.. -,t,. We show that Lemma 2 can be applied 

to the sequence (xit_i(-a + £j,b)), where 1 < t < q. This is a sequence of subsums of 

££=i(-ar + ^it*r)- First we estimate the rate of convergence of sequence (£»t) to Siq. For 

l<Jfc<g-2, 

6 



< (frt+1+i - sik+1)(i + \ + \ + • - • + aft-^-i)) 

< £(*.-**)• 
The inequalities in the second and fourth lines follow from Inequality (9). 

Recall that 6i+1 = (axi)/(bx;), so for k = 1,2,..., q, 

Xit_a(-a+ 5i?b) = (fc, - fcjbx^-!. 

Put 

c   =    -a + 6i,b, 

yfc    =   Xit_i}     for k = l,2,...,q. 

We have for Jfe = 1,2,..., q - 1, 

y*+iC = Jifc+1-i(*it-*it+1)<Bit_i^(ffit-«ifc) = ^yfcC. 

Thus vectors c and y*'s satisfy the conditions of Lemma 2, so q < p. It means that there 

are at most O(p2logp) consecutive iterations for which Inequality (8) holds.   ■ 

Lemmas 3 and 4 immediately imply the following strongly polynomial bound on the 

number of iterations. 

Theorem 3 Newton's method applied to an LFCO problem finds the optimum in O(p4\og2p) 

iterations. 

If the weights are nonnegative, then there are at most O(plogp) iterations with Bk+i < 

l-Bfc. Therefore in such a case Newton's method works in 0{j>3) iterations. ' 

3    Minimum maximum arc cost transshipment problem 

A (transshipment) network G = {V,E,u,d) is a digraph (V,E) with a capacity function 

u : £ —* K U {+oo}, and a demand function d : V —► B. such that J^vev d(v) = °- We 



assume, for convenience in presentation but without losing generality, that E is symmetric 

and u is nonnegative. Negative d(v) means that v is a source - a vertex with supply, positive 

d(v) means that v is a sink - a vertex with demand. Let n and m denote the cardinality of 

V and the half of the cardinality of E, respectively. We assume m > n. 

We adopt the convention that any function <p : F —► R is extended to all finite subsets 

of F: <p(A) = T,x€A >p{x). Thus if A C V, then d(A) = Y,veA d(v)> wilich is the net demand 

in A. The total demand in G is d(G) = J2v:d(v)>o <*(*>) • 

A pseudoflow in G is an antisymmetric function / : E —> R, i.e., for every (v, w) £ E, 

f(v,w) = —f(va,v). A pseudoflow / creates excesses at vertices: the excess at vertex v is 

e*(v) = "Z,w.twv)<:Ef(w>v)- *f e*(v) — ^(v)' t^en we say t^iat Pseudoflow / satisfies the 

demand at vertex v. A flow is a pseudoflow / that meets capacity constraints and does not 

increase demands: f{w,v) < u(w,v), for every arc (w,v) £ E, and e*(v) is between 0 and 

d(v), for every v € V. A transshipment is a flow which satisfies demands at all vertices. 

G is feasible if there is a transshipment in G. The transshipment feasibility problem is the 

problem of verifying if a given network G is feasible. For a pseudoflow / in G, the residual 

network Gf is (V,E,uf = u— f,d* = d- ef). Ga denotes G with the capacity function 

changed to fi. Thus G{ = (V, E,üf, df). 

If S and T partition V, then cut (5, T) in G is the set of arcs (v, w) of E such that 

v e S and tr € T. The capacity and the «urpZtts of a cut (5, T) are «(5, JT) = ~E,e€(s,T) uie) 

and 5urpJtM(S,T) = d(T) - u(5}T)5 respectively. Our definition of surplus(S,T) is the 

same as in [7] the definition of V(T, S), the value of a cut (r, 5). It is easy to verify that 

the surplus of a cut is the same in G as in Gi for any flow /. A positive surplus means 

that the cut blocks the flow. Any flow must leave at S at least the amount surplus(S,T) 

of the commodity, which is demanded at T. Let mean(S,T) = surplus(S,T)/\(S,T)\ 

be the mean surplus of (5, T) in G, and, if a weight function b : E —► R is specified, 

mean.w(S, T) = surplus{S, T)/b(S, T) be the mean-weight surplus of (5, T) in G. 

The minimum cost transshipment problem, which is often refer to as the transshipment 

problem, is to compute for a given network G and a given cost function c : E —► R, the 

mfnJTTittTn cost of a transshipment in G, when the cost of transshipment / is Y,e€E /(e)c(e)- 

This problem has been well studied, often as the minimum cost circulation problem (these 

problems are reducible to each other in linear time). Fastest currently known algorithms for 

this problem can be found in [1, 2, 4, 9, 12]. In this paper we are interested in the problem 

of minimizing the maximum arc cost instead of the sum of arc costs. Here is the list of the 



transshipment problems we consider.  They are closely related to each other. We assume 

that cost functions and weight functions are nonnegative. 

Minimum maximum arc cost transshipment problem (MAC) 

A transshipment network G and a cost function c : E —* R are given. Compute the 

TniniTTinTTi of the maximum arc cost over all transshipments in G, that is, compute 

6" = min{max{/(e)c(e)} | /is a transshipment inG}. 

Minimum maximum capacity violation cost transshipment problem (MCVC) 

A transshipment network G is given, which might not be feasible. The objective is to 

obtain a feasible network by increasing the capacities. A weight function 6 : E —► R 

is given, which specifies by how much the capacities of the arcs can be increased in 

unit cost. It means that the cost of increase of the capacity of arc c from u(e) to 

u(e\ -i- £ is £/6(e). Compute the TnrniTmrm of the maximum cost of increasing the 

capacity of an arc, that is, compute 

6" = min{5 > 0 | Gu+«,is feasible}. 

Minimum maximum capacity violation transshipment problem (MCV) 

This is the MCVC problem with the uniform weight function: 6 = 1. 

Maximum mean-weight cut problem (MWC) 

A transshipment network G and a weight function b : E —► R are given. Compute 

the maximum mean-weight surplus over all cuts with nonnegative surplus, that is, 

compute 

S~ = max{*"rf,^'   ^ | (5, T) cut in G with nonnegative surplus}. 
6(5, T) 

Maximum mean cut problem (MC) 

This is the MWC problem with the uniform weight function. It means that we are 

asked to find 

6* = max{ 5tt7>^"^ '   ' | (5, T) cut in G with nonnegative surplus}. 
\{S, T)\ 

A cut with the maximum nonnegative mean-weight surplus and a cut with the maxi- 

mum nonnegative mean surplus we will call a maximum mean-weight (surplus) cut and a 



maximum mean (surplus) cut, respectively. We formulated the above problems in a way 

that the miniTmiTn or the maximum value is sought, not the corresponding optimal flow or 

cut. We did it only for convenience in further presentation. The algorithm we discuss in 

the next section and actually all other algorithms for the above problems compute both the 

optimal value and the corresponding optimal structure (transshipment or cut). 

As mentioned in [8], the problem of minimizing the maximum arc cost appears, for 

example, when it is desirable not to use an arc at its full capacity. Each arc e has some 

safety level 5(e) and the ratio f{e)/s(e) is sought to be minimized, with the general objective 

of getting the maximal ratio as small as possible. The MAC problem captures also the 

following dynamic situation. The network is in continuous activity, that is, the sources 

continuously keep producing commodity and sending it to the sinks. The objective is to 

maximize the throughput. More formally, suppose l/c(e) is the amount of the commodity 

which can be shipped through arc e in unit time. It means that the shipment of /(e) units 

through e takes /(e)e(e) time. Further suppose that every source s generates -d(s) units 

of the commodity every r units of time and sends it out, and every sink t has to get d(t) 

units of the commodity every r units of time. Then the optimal 6" in the formulation of 

the MAC problem is equal to the minimal possible r such that no congestion arises at any 

vertex. 

Before discussing the previous work relevant to the problems in which we are interested, 

we first establish relation between them. 

The value of a flow f is the amount by which / decreases the total demand: value(f) = 

Dt>:d(t>)>o eHv)- -A- maximum flow in G is a flow in G of the maximum value. The maximum 

flow problem is the problem of finding a maximum flow in a given transshipment network. 

A maximum (surplus) cut is a cut with the maximum nonnegative surplus. The maximum 

(surplus) cut problem is the problem of finding a maximum cut in a given transshipment 

network. 

The transshipment feasibility problem, the maximum flow problem and the maximum 

cut problem are the nonfractional/nonparametric problems that correspond to our frac- 

tional/parametric problems. The transshipment feasibility problem and the maximum flow 

problem can be easily reduced to the standard maximum flow problem. A maximum flow 

in a transshipment network can be used to find a maximum surplus cut, in a similar way as 

a maximum flow in a standard maximum flow network can be used to identify a minimum 

capacity cut.   Let TMF(»,"0 denote 0(M(n,m)), where M(n,m) is the time complex- 

10 



ity of the standard maximum flow problem. The transshipment feasibility, the maximum 

flow in a transshipment network, and the maximum surplus cut problems can be solved in 

TUF{n,m) time. Currently it is known that TuF(n,m) = 0(nm\og(n2/m)) [3], and slightly 

better bounds exist for dense graphs. 

Let for a transshipment problem P, Tp(n,m) denote its time complexity. The following 

theorem shows close relation between the MAC problem and the MCVC problem. 

Theorem 4 

1. TMcvc(n, m) < 0{m) + TMACC«, 2m). 

2. TuAc{n,m) < O(mlogm) + rMF(n,m)0(logm) + Tucvc(n,rn). 

Proof. 

1. For a given instance I of the MCVC problem construct an instance V of the MAC 

problem in the following way. Replace each arc c in I with two parallel arcs ea and 

e2. Put u'(ca) = u(e), e'(ei) = 0, u'(e2) = +oo, c'(e2) = l/6(e). The demand function 

in V is the same as in I. A solution (transshipment) to V gives in the natural way 

the solution to I. 

2. Let S" be the solution to the given instance I of the MAC problem. It is easy to see 

that 6" < 6 if and only if GminK*/e} is feasible. Therefore 

S" = min{£ > 0 | GmjnCu.s/c} *s feasible}. 

To get an instance of the MCVC problem, it is enough to know for each arc c, if 

u{e) is essential, i.e., if «(e) < S'/c(e). We sort the list (u(e)c(e) | e G E} and using 

binary search we find the position of S" in it. This takes TMF(n,m)0(logm) time. 

Now we construct an instance V of the MCVC problem. The underlying graph and 

the demand function remain without changes. The capacities and weights are defined 

as follows. 
f„'M^-lWe)'0)      if «(e)c(e)<^, 
(tt(e),6(e)) - | (0jl/c(e))   if u(e)c(e) > r. 

6*, the solution to 7, is also the solution to I'. 

11 



Let meanjws(S, T) denote the mean-weight surplus of (S, T) in Gu+sb- Then 

meanjws(S,T) = meanjw(S,T) - 6. 

It means that the maximum meanjw(S, T) is equal to the minimum S for which Gu+sb does 

not contain cuts with positive surplus. Therefore the following theorem implies that the 

MCVC problem and the MWC problem are equivalent (and so are MCV and MC), i.e., 

min{£ > 0\Gu+sb is feasible} = 

max{mean.w(S, T) | (5, T) cut in G with nonnegative surplus}. 

Theorem 5 [5] G is feasible iff there is no cut in G with positive surplus. 

The MWC problem is an LFCO problem. ^ C {0,!}"+"» corresponds to the set of all 

cuts in G. Vector x € XG represents cut (S, T) such that for 1 < i < n, x,- = 1 iff v» € T, 

and for 1 < j < m, zn+y = 1 iff tj € (5, T), where Vi is the tth vertex and tj is the jth arc. 

Vector a from the formulation of an LFCO problem is here (d, -u), where d and u are the 

vector representations of functions d and u. If x represents (5, T), then ax and bx are now 

surplus(S,T) and b{S,T). 

Megiddo [8] showed how to solve the MAC problem with his parametric search method. 

This method gives an 0{n3m) running time and can give a better time only if a break- 

through in parallel maximum flow computation is achieved. Binary search solves MAC with 

integral data in 0{T^^{n,m)\o%{riU)) time. More is known about the case with uniform 

weights. McCormick and Ervolina [7] proposed an algorithm for computing a maximum 

mean cut. This algorithm is essentially an application of Newton's method. They showed 

an 0[m) bound on the number of iterations (see Theorem 2). One iteration is dominated 

by maximum flow computation. We were able to prove that the number of iterations in 

this algorithm is in fact 0(n) [10]5 so the time complexity of MC, as well as MCV and 

MAC with uniform costs, is Ö(n2m). For these problems the bound 0{TtsF{n,m)\og(nU)) 

can be improved to 0(nmlog(nU)) by using approximate maximum flow computation in 

connection with either Newton's method [10] or binary search [6]. 

In the next section we prove an 0{m) bound on the number of iterations in Newton's 

method applied to the MCVC problem. This implies an 0(TMF(«, m)m) = 0{m2n) bound 

on the time complexity of MCVC, MAC and MWC. 
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4    Newton's method for the MCVC problem 

A transshipment network G and a (nonnegative) weight function b are given. We assume 

that G is not feasible. Gs stands for Gu+sb, and generally subscript 6 indicates that the 

underlying network is Gu+sb- We want to find 

S' = min{£ | G^is feasible}, 

which, as mentioned in the previous section, is equal to 

max{mean.w(S, T) | (5, T) cut in G }. 

The function h(6) used in the discussion of a general LFCO problem in Section 1 is now 

h{5) = msx{surpluss(S, T) | (S, T) cut in G }. 

h(6) is also equal to the total demand left in G{, where / is a maximum flow in Gs- 

We describe the way Newton's method finds 6", the root of h(6). Let 6 < S* be the 

current (under)estimation of 6*. Initially 6 = 0. During one iteration we find a maximum 

cut (5, T) in Gj. This is done by computing a maximum flow / in Gg. If the surplus of 

(5, T) is zero, i.e., if / is a transshipment, then 6* = 6 and algorithm terminates. Otherwise 

we compute the next estimation S = mean_tü(5, T) and go to the next iteration. Moving to 

the next estimation should be seen as increasing the capacity so that the surplus of (5, T) 

decreases to zero. 

For any flow / in G, the surpluses of cuts are the same in G as in G*. It means that 

in the current iteration we can perform computation on any residual network of G§ instead 

of on Gi itself. In the analysis we assume that the network in the current iteration is Gj, 

where / is the sum of the maximum flows computed in all previous iterations. It means 

that / is a maximum flow in Gg', where 6' is 6 from the previous iteration. 

Let 6{ be 6 at the beginning of iteration:', and (Si, Ti) be the cut found in this iteration. 

Bi, and Hi from Section 2 have here the following meaning. 

Bi   =   b(Si,Ti), 

Hi   =   h{6i) = surplus(Si,Ti) - 6ib(Si,Ti). 

Let fi be the sum of the flows computed through iteration t. Flow ft is a maximum flow in 

Gg{. Si is the total demand in G^*. 
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Theorem 1 implies that if the capacities and the weights are integers from [—U,U], 

then the algorithm runs in 0(log(nU)) iterations. The weights are nonnegative, so the 

remark after Theorem 3 implies the strongly polynomial bound of Ö(m?) on the number of 

iterations. In this section we show an 0(m) bound on the number of iterations. 

An arc e is unessential in G, if its capacity is greater than the total demand or its 

weight is greater than the weight of a maximum surplus cut. When we use expression "e is 

unessential" in the context of the algorithm, we mean that e is unessential in the current 

network. If an arc is unessential in G\, for some 6 > and flow / in G&, then it is unessential 

in Ggtf!, for any 6 > 0 and any flow /' in Gg+S,: Increasing 6 increases the capacity of 

an arc and decreases the maximum surplus of a cut; augmenting with a flow may decrease 

the capacity of an arc but by not more than it decreases the total demand. Therefore if 

at some point in the algorithm some arc is unessential, it remains unessential through the 

end of the computation. An unessential arc cannot belong to a maximum surplus cut. We 

showthat few iterations are enough to make a new arc unessential. 

Lemma 5 From the iteration i + 2 on, the (current) capacity of cut (Si,Ti) is greater than 

Ei+%. 

Proof. At the beginning of iteration t +1 the capacity of cut (Si, TJ is equal, by definition, 

to Hi, the remaining total demand. In iteration i + 1 the capacity of each cut decreases by 

at most Hi - Hi+i and then increases by (Ei+i/Bi+i)B, where B is the weight of this cut. 

It means that in iteration f + 1 the capacity of cut (Si,Ti) first decreases but does not go 

below Ei+i. Then it increases by more than Ei+i, because its weight is greater than B»+i. 

Therefore at the end of iteration * + 1 the capacity of {Si,Ti) is greater than 2Ei+i. From 

now on the capacity of (Si,Ti) is always greater than Ei+1, because the total decrease of 

this capacity cannot be greater than the total demand left after iteration t + 1, which is 

Hi+i. 

Putting the above argument in a more formal way we get the following bound on the 

capacity of (Si, T») at the beginning of iteration i+l, where / > 2. According to our notation, 

the capacity function at the beginning of iteration t + / is u$**j~l. 

tt&J-^.Ti)   > u}i(Si,Ti) + (6i+i-6i)Bi-(Ei-Ei+i.1)      . 

= (6i+i - 6i+1)Bi + (Si+1 - 6i)Bi - Hi + ffi+i-i 

= (h+i — £t+i)-B» + Ei+i-i 

> (f>i+2 — &i+i)Bi 
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>   (£»'+2 — 6i+i)Bi+i 

=   -STt+i • 

We first prove an O(mlogm) bound to show the main idea. To prove an 0(m) bound, 

we will need a finer accounting strategy. 

Theorem 6 Newton's method solves MCVC in O(mlogm) iterations. 

Proof. We use Inequality (4) to show that after O(logm) iterations a new axe becomes 

unessential. Let the current iteration be the ith one. Let I = [logmj + 2. It follows from 

Inequality (4) that 
77.. .B. . ■ s _ 

,2 Ei+iBi+l < ^Ei+1Bi+1. (10) 

If Bi+i < ±Bi} then there exists an arc e € (5t-,r<) such that b(e) > Bi+i. Such an arc 

is unessential from iteration i + / on. 

If Bi+i > ^Bi, then Bi+i > £J?;+i as well, and Inequality (10) implies that Ei+i < 

—Ei+i. Lemma 5 says that the capacity of (Si, T;) at the beginning of iteration i + 1 + 1 

is greater than Ei+i, so its greater than mEi+i. It means that the capacity of some arc in 

(Si,Ti) in G£
+
' (which is the network at the beginning of iteration t + / + 1) is greater 

than Ei+i, the total demand in G^+l . Such an arc is unessential from iteration i + / + 1 

on.   ■ 

Theorem 7 Newton's method solves MCVC in 0(m) iterations. 

Proof. Lemma 1 implies that for each iteration t, 

Bi   <- (11) 
Bi-i ~ 2 

or 
Hi   <-. (12) 

Ei-i ~ 2 
We first bound the number of iterations t for which (11) holds. Let (/*»)*_! be the sequence 

of jBi's in these iterations and (aj)^=1 be the positive 6/s arranged in nonincreasing order. 

It is easy to see that sequences (aj)?=1 and (/*i)Li satisfy the conditions of Lemma 6, so 

q < p < m. 

Now we bound the number of iterations t for which (12) holds. Here the argument is 

more involved, because JT;'s are not just subsums of a set of m elements. They are related 

to the current demands and capacities, which vary from iteration to iteration. 
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To avoid towering subscripts, we renumber iterations taking into an account only itera- 

tions with (12). It means that now iteration i is what used to be the ith iteration with (12). 

All subscripts refer to the new numbering. 

We assign iterations to arcs in such a way that at most 5 iterations are assigned to one 

arc. We stop the process of assigning when all but at most q + 2 = [log m] + 5 iterations 

have been assigned. Assume that there are still at least q + 3 unassigned iterations. Let 

iteration i be the first among them. Consider cut (Si,Ti). Let p be its cardinality. Let for 

1 <j <p and 1 < I < q, fi,j be the capacity of the j'th arc in (Si, T{) (assuming any order 

on the arcs in (Si, Tj)) at the beginning of iteration i + l + 2. It follows from Lemma 5 that 

for each 1 < I < q, 

$>,; >#<+:• (13) 

For each arc, the difference between its capacities at the beginning of iterations k + 1 and 

k + 2 is not greater than the total demand at the beginning of iteration k + 1, which is Ek- 

It means that 

hij-fi+llj\<3i+w<^Ei+1. (14) 

The definition of q, (13), and (14) imply that matrix (nj/Ei+i) satisfies the conditions of 

Lemma 7. It means that there exists k > 3 such that at least k - 2 elements from 7^1, 7jt,2, 

..., 7jtiP are greater than l/2kEi+1 > Ei+k+i- Therefore the arcs corresponding to these 

k - 2 elements are unessential at iteration t" + k + 2. We assign iterations t through i + k + l 

to these arcs. Notice that none of these arcs was unessential at iteration i, so none of the 

previous iteration was assign to any of them. 

During this process of assigning iterations to arcs, no more than 5 iterations are assign 

to one arc, and no more than O(logm) iterations are left unassigned. We conclude that 

there are at most 5m + O(logm) iterations for which (12) holds.   ■ 

Lemma 6 Let ai > Q2 > • • • > Op > 0 and Hi > \ii > ... > fiq > 0 be such that 

1. fii+l<\fii, for i= 1,2,...,q-I, 

2. /t? > ap- 

3- Vn. < T,iaj I ai ^ Mi), for t = 1,2,.. .,g. 

Then q < p. 
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Proof. Let äj = a, + CLJ+I H 1- ap. Condition 3 implies that fix < ä\. Thus, to prove 

q < p, it is sufficient to show that each of the intervals (0,äp], (öp,Qp_i], ..., (Q3,Q2], 

(ä2,äi] contains at most one element from (/*;). Condition 2 implies that only the last 

element can be in (0, op]. Let for some l<j"<j>-landl<i<ff-l,/ü€ (ä,-+i, ey]. 

We show that fii+i < ö,-+i. 

If öj+i > \äj, then 
1 1 

If äj+i < \äj, then 

The above inequality and Condition 3 imply pi+i < äj+i.  ■ 

Lemma 7 Let (aij) be a q x p matrix such that 

1. $ > log?+3, 

2. the sum of each row is not less than 1, 

3. loj+ij - ctij\ < 1/2% for 1 < t < q and 1 < j < p. 

If aij > 1/2', then we call this and all subsequent elements in column j good elements. There 

is k > 3 such that row ife contains at least k - 2 good elements. 

Proof. Condition 3 implies that if 1 < t' < i" < q and 1 < j < p, then 

If aij is the first good element in column 3 and t > 2, then 

1111 ,1fix 
Oij < ai-ij + gin < jjzr + 2iZT = 2i=2' l    ' 

Assume that for all k > 3, row Jfe contains at most k - 3 good elements. We will get 

contradiction by showing that the sum of the last row is less than 1. Let j'1,7'2, • • -,Ji be 

the indices of all columns with at least one good element. Let a^j",»«^.»*-••■>aiiM ^e 

the first good elements in these columns. Let jlt j2,■ • • ,ji be ordered in such a way that 

tx < i2 < • • • < t'j. Row ifc contains at least k good elements (a^, &ik,J2 J • • • > ^tä) 
S0 

«fc > * + 3. (17) 
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The sum of the last row is at most 

p-l 

< £ + to* + ^) + ■ • • + K,* + 2iPi) 
l      l       l . l       l 

- 8 + ^2ii-2 + 2*»-1' + " ' + ^'-2 + 2i'"1 ' 
1     , ( 1 1 

= _ + 6   —- + 1- — 
8        \2*» 2*' 

<i. 

The first inequality follows from (15), the second one from (16) and Condition 1, and the 

third one from (17).  ■ 

5    Concluding Remarks 

We proved that Newton's method solves a linear fractional combinatorial optimization prob- 

lem in a strongly polynomial number of iterations. We did it by combining the fast con- 

vergence of the method with the limiting way the numbers involved in an LFCO problem 

can be spread along the real line. That "limiting spread" follows from the fact that these 

numbers are obtained using only few multiplications/divisions. Observe that for example 

the generalized flow problem does not have this property, and we do not know how our type 

of analysis could be useful in such a case. 

We showed that Newton's method gives an 0(m) iteration algorithm for the transship- 

ment problem when the maximum arc cost is minimized. One iteration in this algorithm is 

dominated by the maximum flow computation, so the overall running time is Ö(m2n). This 

improves the upper bound achieved with Megiddo's parametric search. We believe that the 

bound on the number of iterations is 0(n), but we have not been able to prove it. 

We may have a transshipment network with two cost functions, one related to minimizing 

the sum of arc costs and the other to minimizing the maximum arc cost. In the same O (m2n) 

time bound we can perform the "double minimization". To minimize the sum of the arc 

costs over the transshipments which minimize the maximum arc cost, we first minimize the 

maximum arc cost and get in this way additional capacity constraints. Then we minimize 

the sum of arc costs taking into an account these additional constraints. To minimize the 

maximum arc cost over the transshipments which minimize the sum of arc costs, we first 
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compute a transshipment which minimizes the sum of arc costs, and its dual, and identify 

all arcs which have to be saturated in all such transshipments. Then we can minimize the 

maximum arc cost of the remaining arcs. 
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